Species-specific functions of Epstein-Barr virus nuclear antigen 2 (EBNA2) reveal dual roles for initiation and maintenance of B cell immortalization
نویسندگان
چکیده
Epstein-Barr virus (EBV) and related lymphocryptoviruses (LCV) from non-human primates infect B cells, transform their growth to facilitate life-long viral persistence in the host, and contribute to B cell oncogenesis. Co-evolution of LCV with their primate hosts has led to species-specificity so that LCVs preferentially immortalize B cells from their natural host in vitro. We investigated whether the master regulator of transcription, EBV nuclear antigen 2 (EBNA2), is involved in LCV species-specificity. Using recombinant EBVs, we show that EBNA2 orthologues of LCV isolated from chimpanzees, baboons, cynomolgus or rhesus macaques cannot replace EBV EBNA2 for the immortalization of human B cells. Thus, LCV species-specificity is functionally linked to viral proteins expressed during latent, growth-transforming infection. In addition, we identified three independent domains within EBNA2 that act through species-specific mechanisms. Importantly, the EBNA2 orthologues and species-specific EBNA2 domains separate unique roles for EBNA2 in the initiation of B cell immortalization from those responsible for maintaining the immortalized state. Investigating LCV species-specificity provides a novel approach to identify critical steps underlying EBV-induced B cell growth transformation, persistent infection, and oncogenesis.
منابع مشابه
Notch1, Notch2, and Epstein-Barr virus-encoded nuclear antigen 2 signaling differentially affects proliferation and survival of Epstein-Barr virus-infected B cells.
The canonical mode of transcriptional activation by both the Epstein-Barr viral protein, Epstein-Barr virus-encoded nuclear antigen 2 (EBNA2), and an activated Notch receptor (Notch-IC) requires their recruitment to RBPJ, suggesting that EBNA2 uses the Notch pathway to achieve B-cell immortalization. To gain further insight into the biologic equivalence between Notch-IC and EBNA2, we performed ...
متن کاملThe EBNA2 polyproline region is dispensable for Epstein-Barr virus-mediated immortalization maintenance.
Epstein-Barr virus nuclear antigen 2 (EBNA2) is required for EBV-mediated immortalization of primary human B cells and is a direct transcriptional activator of viral and cellular genes. The prototype EBNA2 protein contains a unique motif in which 43 out of 45 amino acids are prolines (polyproline region [PPR]). Previous genetic analysis has shown that deletion of the PPR resulted in viruses una...
متن کاملFunctional replacement of the intracellular region of the Notch1 receptor by Epstein-Barr virus nuclear antigen 2.
The intracellular region (RAMIC) of the mouse Notch1 receptor interacts with RBP-J/CBF-1, which binds to the DNA sequence CGTGGGAA and suppresses differentiation by transcriptional activation of genes regulated by RBP-J. Epstein-Barr virus nuclear antigen 2 (EBNA2) is essential for immortalization of human B cells by the virus. EBNA2 is a pleiotropic activator of viral and cellular genes and is...
متن کاملEBNA2 amino acids 3 to 30 are required for induction of LMP-1 and immortalization maintenance.
Epstein-Barr virus (EBV) nuclear antigen 2 (EBNA2), a direct transcriptional activator of viral and cellular genes, is required for EBV-induced B-cell transformation. The functional role of conserved regions within the amino terminus of the protein preceding the poly-proline region has yet to be fully characterized. Thus, we tested whether the EBNA2 amino-terminal 30 amino acid residues, contai...
متن کاملMediation of Epstein-Barr virus EBNA-LP transcriptional coactivation by Sp100.
The Epstein-Barr virus (EBV) EBNA-LP protein is important for EBV-mediated B-cell immortalization and is a potent gene-specific coactivator of the viral transcriptional activator, EBNA2. The mechanism(s) by which EBNA-LP functions as a coactivator remains an important question in the biology of EBV-induced B-cell immortalization. In this study, we found that EBNA-LP interacts with the promyeloc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 13 شماره
صفحات -
تاریخ انتشار 2017